megengine模型 技巧megcc

R语言PLS-DA模型分析不同中医组别患者间差异指标数据可视化

全文链接 :https://tecdat.cn/?p=34809 原文出处:拓端数据部落公众号 PLS-DA (Partial Least Squares Discriminant Analysis) 是一种多变量统计分析方法,常用于处理具有多个预测变量和多个响应变量的数据。在本文中,我们帮助客户使 ......
组别 患者 模型 差异 中医

生成模型—VAE

生成模型—VAE(Variational Auto-Encoder) 为进一步了解面部反应生成模型的原理,故详细学习VAE。 Auto-encoder 感谢李宏毅老师的视频! 自编码器是一种无监督学习的神经网络模型,可以用于数据降维、特征压缩、特征提取、数据生成等任务。其主要思想是尝试将输入数据通过 ......
模型 VAE

Gorm实战,轻松掌握数据库增删改查技巧!

Gorm实战,轻松掌握数据库增删改查技巧! CRUD通常指数据库的增删改查操作,本文详细介绍了如何使用GORM实现创建、查询、更新和删除操作。 目录Gorm实战,轻松掌握数据库增删改查技巧!一、Create(创建)1.1 创建记录1.2 用指定的字段创建记录1.3 批量插入1.4 创建钩子1.5 根 ......
实战 数据库 技巧 数据 Gorm

Gorm 数据库表迁移与表模型定义

Gorm 数据库表迁移与表模型定义 一、Docker快速创建MySQL实例 1.1 创建 因为这里我们是测试学习使用,单独安装MySQL 比较费时费力,所以这里使用Docker方便快速掌握Gorm 相关知识。 如果你没有docker环境,可以参考:【一文搞定】Linux、Mac、Windows安装D ......
模型 数据库 数据 Gorm

扩散模型

该模型是学习从噪音中如何去除噪音生成一个他已经学会的图片,所以一开始输入模型的是噪音,但是经过一次处理效果不会非常好,所以要循环迭代很多次,得到最终生成结果。 模型预测的实际上是噪音,也就是说要将输入图片减去模型预测的噪音,得到生成结果。 这里没有讲的太细,我的理解是神经网络需要的输入是正态分布的噪 ......
模型

解析flywheel飞轮模型以及它的落地路径

Brian Halligan提出的flywheel飞轮模型,比RARRA模型更进了一步。不止关注用户留存,更关注的是现有用户如何推动企业增长。 HubSpot创始人Brian Halligan在Inbound2018大会上说,他们从此以后就彻底跟营销漏斗说再见了,要用flywheel飞轮模型。 我本 ......
飞轮 路径 flywheel 模型

大模型调优方法:提示工程、RAGs 与微调对比

每一个搭建大语言模型应用的AI工程师都会面临一个难题,如何选择一个合适调优方法。就算是强大的预训练LLM也可能无法直接满足项目中的特定需求。如项目需要一个特定结构的应用程序,如预训练缺失上下文的重要文件,再比如有特定术语和结构的高专业性的行业领域,面对这些问题,需要有特定的方法来调整LLM。 要决定 ......
模型 方法 工程 RAGs

大语言模型LLM幻觉的解决方法:检索增强生成RAG

当你向大语言模型LLMs集成的问答系统平台咨询医疗方面的问题,比如呼吸道感染应该怎么治疗,它可能直接给出答案,但不会提供这个答案的依据来源,这是因为大语言模型应用过程中还存在答案透明度不足的缺陷导致。此外,大语言模型还有知识更新的滞后性、在处理复杂任务时的准确性的问题。 为了解决这些问题,检索增强生 ......
幻觉 模型 语言 方法 LLM

常见3D模型汇总

3D模型查看器: 3D查看器 (Windows自带) Blender MeshLab (基于VCGlib) 3D模型来源: 美工建模 (fbx) 三维重建 (ply/obj) 3D-AIGC 3D模型格式: obj fbx glb (glTF2.0):https://github.com/Khron ......
模型 常见

软件生命周期模型定义与选择策略

![](https://img2024.cnblogs.com/blog/3351537/202401/3351537-20240111151615438-216580632.png) ![](https://img2024.cnblogs.com/blog/3351537/202401/33515... ......
周期 模型 策略 生命 软件

少见但非常好用的js写法技巧。

1. 使用 flatMap 数组方法 flatMap() 本质上是 map()和 flat() 的组合,区别在于 flatMap 只能扁平1级,flat 可以指定需要扁平的级数,flatmap 比分别调用这两个方法稍微高效一些。 const arr = [1, 2, [4, 5], 6, 7, [8 ......
写法 技巧

数字先锋 | “言”之有“力”,大模型背后的算力“推手”!

在算力调度方面,天翼云通过自研的调度系统,协助思必驰DFM-2大模型调度GPU、NPU、CPU等异构算力资源,大规模训练上云1个月,可以完成数十亿规模大模型所有阶段训练和效果评估。在训练能力打造方面,天翼云支持多种模型训练方式,不仅可以提升大模型训练平台的数据量,还大幅缩短了训练周期和交付进度。 ......
推手 模型 背后 数字

GPT人工智能模型研究报告:探索智能极限

GPT人工智能模型是一个基于深度学习技术的自然语言处理模型,它能够理解和生成人类语言。该模型使用大量文本数据进行训练,学习语言的语法、语义和上下文信息,从而实现对语言的深层理解。 研究表明,GPT模型在多项自然语言处理任务中表现出色,如机器翻译、文本摘要、问答系统等。它能够根据输入的文本生成连贯、通 ......

机器学习-决策树系列-贝叶斯算法-概率图模型-29

目录1. 复习条件概率2. 正式进入3. 生成式 与判别式 这个阶段的内容,采用概率论的思想,从样本里面学到知识(训练模型),并对新来的样本进行预测。 主要算法:贝叶斯分类算法、隐含马尔可夫模型、最大熵模型、条件随机场。 通过本阶段学习,掌握NLP自然语言处理的一些基本算法,本阶段的理解对于后续完成 ......
概率 算法 模型 机器 29

计算机网络分层结构--OSI模型、TCP/IP 模型、五层模型

计算机网络分层结构 OSI参考模型与TCP/IP参考模型 五层参考模型 ......
模型 计算机网络 结构 OSI TCP

streamlit使用技巧

实现上传PDF并显示 ## 上传并预览(1M以内才可预览) def upload_Pre(): file = st.file_uploader("选择待上传的PDF文件", type=['pdf']) if st.button("点击"): if file is not None: with tem ......
使用技巧 streamlit 技巧

听6位专家畅谈AI大模型落地实践:场景和人才是关键

回顾大模型技术在企业的应用过程中,我们不禁要问:大模型在落地方面带来了哪些改变?开发者如何应对大模型的变革?在AI大模型的驱动下,企业的未来又会走向何方? ......
模型 场景 关键 专家 人才

uniapp中路由的使用技巧

Laravel是一个流行的PHP框架,它具有出色的可测试性,可以帮助开发人员在更短的时间内编写可靠的代码。但是,即使使用了这个框架,也可能会出现测试覆盖率较低的情况。测试覆盖率是指代码中已由测试案例覆盖的部分比例。测试覆盖率越高,代码质量越高。在本文中,我们将分享几种技巧,帮助您提高Laravel应 ......
使用技巧 路由 技巧 uniapp

浦语书生大模型实战训练营02笔记

1.打开算力平台,选择合适的配置进入算力开发机进入jupyter工具终端安装开发所需python深度学习环境: bash # 请每次使用 jupyter lab 打开终端时务必先执行 bash 命令进入 bash 中 bash /root/share/install_conda_env_intern ......
训练营 书生 实战 模型 笔记

R语言无套利区间模型:正向套利和反向套利次数、收益率分析华泰柏瑞300ETF可视化

全文链接:http://tecdat.cn/?p=31973 原文出处:拓端数据部落公众号 股指期货的套利交易有助于股指期货实现其价格发现以及风险规避的功能,因此提高套利交易的效率,对于发挥股指期货在经济发展中的作用有着重要的意义。 本文帮助客户对期货期现套利的研究。研究中主要以期货及其现货指数的数 ......
收益率 区间 收益 模型 次数

1.9 Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation 基于语义分割遥感图像的模型

Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation 参考遥感图像分割的旋转多尺度交互网络 参考遥感图像分割 (RRSIS)是一个新的挑战,它结合了计算机视觉和自然语言处理,通过 ......

深度学习模型部署TensorRT为何如此优秀?

一、前言 PyTorch模型的高性能部署问题,主要关注两个方面:高度优化的算子和高效运行计算图的架构和runtime。python有快速开发以及验证的优点,但是相比C++来说速度较慢而且比较费内存,一般高性能场景都是使用C++去部署,尽量避免使用python环境。 TensorRT为什么那么快,因为 ......
深度 TensorRT 模型

IDEA Debug 调试技巧(基础版)

前言 Debug 是程序员的开发神器,使用好了可以帮助我们非常高效的工作、学习、排查问题等。毫不客气的说,是决定我们进阶到更高层级的一个重要技能。 正文 Debug 的常见使用场景 需求代码测试:通过debug你才能知道你的代码究竟是怎么运行的,更容易发现问题 问题排查:只要能进入到问题流程的deb ......
技巧 基础 Debug IDEA

EF First 生成数据模型

//创建目录:mkdir EFCoreScaffoldexample//进入目录:cd EFCoreScaffoldExample//创建控制台项目:dotnet new console//添加依赖:dotnet add package Microsoft.EntityFrameworkCore.S ......
模型 数据 First EF

使用PyTorch实现混合专家(MoE)模型

Mixtral 8x7B 的推出在开放 AI 领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型的优势,以提供更好的预测。它是围绕一个门控网络 ......
模型 PyTorch 专家 MoE

记录下在linux部署大语言模型和聊天服务、简历服务等

1、弄清楚外网、内网的区别 2、宝塔面板的使用。 命令行输入 bt 、 bt default(本质是linux开了个端口服务用于宝塔管理服务、代理服务等) 3、netstat -tuln 查看正在运行的端口。 4、服务都启动之后,用宝塔代理相关端口 , 使用 ufw 、 iptables、 fire ......
模型 语言 简历 linux

实现图片轮播效果的CSS属性技巧

Laravel是一个流行的PHP框架,它具有出色的可测试性,可以帮助开发人员在更短的时间内编写可靠的代码。但是,即使使用了这个框架,也可能会出现测试覆盖率较低的情况。测试覆盖率是指代码中已由测试案例覆盖的部分比例。测试覆盖率越高,代码质量越高。在本文中,我们将分享几种技巧,帮助您提高Laravel应 ......
属性 效果 技巧 图片 CSS

JavaScript函数性能优化:提升程序执行效率的技巧

Laravel是一个流行的PHP框架,它具有出色的可测试性,可以帮助开发人员在更短的时间内编写可靠的代码。但是,即使使用了这个框架,也可能会出现测试覆盖率较低的情况。测试覆盖率是指代码中已由测试案例覆盖的部分比例。测试覆盖率越高,代码质量越高。在本文中,我们将分享几种技巧,帮助您提高Laravel应 ......
JavaScript 函数 效率 性能 技巧

unity3d修改模型位置

using System.Collections; using System.Collections.Generic; using UnityEngine; public class VCCameraWorkerController : MonoBehaviour { public Vector3 ......
模型 位置 unity3d unity3 unity

Omics辅助育种统计方法:最小二乘与混合模型

此幻灯片是来自“Omics辅助育种统计方法”短期课程中的一节:Applications for Ordinary Least Squares and Mixed Models。作者Malachy Campbell,博后毕业于康奈尔大学,是一名计算生物学家,专注于统计基因组学和数量遗传学。热衷于从大规 ......
模型 方法 Omics
共4440篇  :2/148页 首页上一页2下一页尾页